

Development and Integration of a two stage latent heat thermal energy storage system in the built environment Moritz Walter, Jan Zemánek, Alfons Václavík - IEEC 2025, 09.09.2025, Ostravice

Agenda

- Project portrait
 - consortium
 - Idea
 - Potential
- Switchable latent heat thermal energy storage
 - Priciples
 - Material development (in NewHeatIntegrated)
- State of charge determination
 - Calculation & Modelling approach
 - Realization example (NewHeatIntegrated)

Project portrait

Concept & Goals

- Development of a **low temperature** switchable Phase Change Material for technical use
- Design and implementation of a compact two-stage thermal energy storage system with working temperatures of 35°C and 58 °C
- Flexible system control and communication strategy for reduction of power peaks and energy costs
- Simulation (digital twins) and demonstration (demo sites) of function, durability, scalability and costeffectiveness of the storage system
- Social acceptance and engagement of stakeholders involved in the value chain, as well as multipliers and end users

Project portrait

Concept & Goals

- Development of a **low temperature** switchable Phase Change Material for technical use
- Design and implementation of a compact two-stage thermal energy storage system with working temperatures of 35°C and 58°C
- Flexible system control and communication strategy for reduction of power peaks and energy costs
- Simulation (digital twins) and demonstration (demo sites) of function, durability, scalability and costeffectiveness of the storage system
- Social acceptance and engagement of stakeholders involved in the value chain, as well as multipliers and end users

Phase Change Materials (PCM) Salt hydrates as switchable PCM

Phase Change Materials (PCM)

Hidden heat" in the phase transition at constant temperature

- Example: ice pack for the cooler bag, ice cubes in a cocktail
- High storage density with low temperature difference (~200 kJ/kg)
- Phase change temperature (T_{PC}) must be adapted to the application
- Available for T_{PC} in the range from -50 °C to 90 °C
- Paraffins, fatty acids, esters, salt hydrates, ...

Figure 1: discharge temperature vs. time curve for several heat storage principles

Phase Change Materials (PCM)

Salt hydrates as switchable PCM

Phase Change Materials (PCM)

Hidden heat" in the phase transition at constant temperature

- Example: ice pack for the cooler bag, ice cubes in a cocktail
- High storage density with low temperature difference
- Available Phase change temperature (TPC) in the range from -50 °C to 90°C
- Paraffins, fatty acids, esters, salt hydrates, ...

Figure 1: discharge temperature vs. time curve for several heat storage principles

Switchable phase change materials (sPCM)

Supercooling and triggered crystallization of salt hydrates

- Example: Hand warmer pillow for the coat pocket
- Supersaturation (supercooling) due to energy barrier (Fig. 2)
- Homogeneous or heterogeneous crystallization
- Meta-stable state!

Figure 2: free energy as the sum of volume energy and surface energy with critical radius r*

Phase Change Materials

Challenges & development goals

Material homogeneity

- Most salt Hydrates suffer from phase separation due to semi-/incongruent melting process
- Insoluble additives settle during lifetime due to gravity
- → Increasing of viscosity by Thickening / gelling of the salt hydrates

Reliable crystallization control

- Nucleating agents needed for sufficient supercooling suppression in advanced crystallization device
- Additives in general reduce supercooling phenomena in sPCM
- → Supercooling behaviour has to be checked after modification

Cycle stability testing

- Crucial for technical application
- Targeted cycle number depends on application scenario
- Thermal cycles and phase transitions affect material degradation
- → Physical properties and supercooling behaviour have to be examined after sufficient number of cycles

Phase Change Materials Results NewHeatIntegrated

Calcium Chloride Hexahydrate

- nucleating agents with verified effect
- thickening agent is not suitable for cycle numbers >1000
- phase transition enthalpy is decreasing by 20 % over 2500 crystallization cycles

Di-sodium hydrogen phosphate dodecahydrate

- Nucleating agent with verified effect
- Suitable thickening agents under research

Sodium thiosulfate pentahydrate

- Nucleating agents under research
- Suitable thickening agents under research, promising candidates identified

SOC Calculation approach

Direct sensing

temperature arrays pressure/volume electrical impedance acoustic damping color

property change during phase transition

melt fraction = SoC

real-time, simple

localized data

calibration + placement

Energy balance (calorimetric)

Basic SoC indicator Entlahpy curve

heat in/out integration and losses subtract \rightarrow

utilized latent heat = SoC

system-level view integration drift uncertain losses

Model & data-driven

Physics models (1D/2D/3D)

Machine learning RNN/LSTM/GRU **TCN**, Transformers

sensor fusion fast inference limited transferability data hungry

PCM Thermal Storage Test Rig

- Examin / validate PCM storage behavior
- high-quality datasets for model validation and control development
- **Heat/cold source**
 - Closed water loop
 - 3×3 kW electric heater
 - 18 kW air-cooled chiller
 - glass tank with insulation
- Storage and heat exchanger
 - 85 kg sodium acetate trihydrate with stabilizer
 - Integrated heat exchanger with **385 aluminum fins** and 8 parallel heating loops

PCM Thermal Storage Test Rig - measuring

temperature measurement systems

- Five DS18B20 digital chains (A–E) totaling 117 sensors embedded across the and mapped (ID→position S1...S20) across the tank
- Two PT100 (3-wire) thermometers on the supply/return lines for ΔT across the exchanger and closed-loop control.

Measurements

- Temperature
- Charge/discharge dynamics
- **Supercooling behaviour**
- System response on triggered crystallization eventphase transitions,
 - with visual inspection through the glass tank and highdensity in-tank temperature fields for model validation

Simulation model

- Physics-based OpenModelica model
 - enthalpy approach via temperature-dependent Cp(T) to capture latent heat around ~55 °C; the
 - tank is spatially discretized and includes heat losses and flowrate dependence
- Physics-based PCM simulation code
 - Enthalpy based finite volume model
 - Supports optional supercooling
- Validation with experimental data from testrig and laboratory measurements

Thank you for your attention!

Contact information

- PCM modification and project coordination
 - Moritz Walter moritz.walter@ict.fraunhofer.de
- State-of-charge determination and system control
 - Jan Zemánek jan.zemanek@vsb.cz
 - Alfons Vaclavik <u>alfons.vaclavik@vsb.cz</u>

