Microwave Plasma Reforming of CH₄/CO₂ Mixtures #### Mateusz Wnukowski Haseeba Saleem Department of Energy Conversion Engineering, Wrocław University of Science and Technology ### **Biogas Reforming** - Rapid population growth. - Ever-increasing energy demand. - Escalating waste generation. - Greenhouse gas emissions and accelerating climate change. - Utilization of waste and greenhouse gases to produce valuable products. ### **Biogas Reforming** ## Microwave (MW) plasma dry reforming of methane (DRM) – process conditions Flow rate: 20, 30, 40 SLM Input MW power: 1800-3000 W CO₂:CH₄ ratio 3:1 0:1 ## Microwave (MW) plasma dry reforming of methane (DRM) – process conditions Flow rate: 20, 30, 40 SLM Input MW power: 1800-3000 W CO₂:CH₄ ratio 3:1 0:1 ### MW plasma DRM - results #### **Products concentration** $$CO_2+H_2 \leftrightarrow CO+H_2O$$ Reverse Water-Gas Shift reaction (RWGS) ### MW plasma DRM – results Conversion ### MW plasma DRM - results #### Conversion $$CO_2+H_2 \leftrightarrow CO+H_2O$$ $$CO_2 \leftrightarrow CO + 1/2O_2$$ ## MW plasma DRM – results Selectivity - CO selectivity is 99-100% - The rest of H-based selectivity is mostly towards water ### MW plasma DRM – results Energy consumption Water electrolysis: 50-60 kWh/kg_{H2} # MW plasma DRM – results Fate of H₂S $$H_2S + CO \leftrightarrow COS + H_2$$ $$CH_4 + 2H_2S \rightarrow CS_2 + 4H_2$$ #### Research Conclusion and Future Perspectives - MW plasma DRM presents a promising and environmentally friendly method for syngas production. - High CO_2 : CH_4 ratios mitigate the soot problem but at the cost of lower H_2 output due to the RWGS reaction. - In MW plasma environment, H_2S is converted into COS and CS_2 , making the removal of H_2S before the process an advised approach. - Substituting part of CO_2 with steam should limit the RWGS reaction impact and provide an additional pool of H_2 , yet still mitigate the soot issue. #### **THANK YOU!** Any Questions? #### Acknowledgements Part of the research was carried out and funded within Erasmus Mundus Joint Master program, Sustainable Biomass and Bioproducts Engineering, Project 101050789 Sus2BioEng