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Artificial neural networks
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Modeling, data analysis, and process optimization supported by deep learning are based on the functioning of the
human brain, which learns primarily from mistakes.

An artificial neural network works similarly. Before being input into the control system, the network is trained until it In a nutshell and

achieves a minimal error (to a set value—supervised learning—or until it determines that it is satisfactory on its own— with significa nt
unsupervised learning). simplification

Once trained, the network becomes a "regular" algorithm that is integrated into the control system of a given device or
system of devices.
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Multi-Layered Perceptron (MLP)



Research motivation

>

Efficient and clean wood

combustion remains a challenge

< Strong variability depending on fuel (beech wood
VS.

briquettes) and operating conditions.

Flue gas composition is critical

= CO = indicator of incomplete combustion
=+ NO, = environmental impact

<+ CO,, O, » combustion efficiency & process
control

Current models are insufficient

< Classical approaches (e.g. ARIMA) fail during
transient phases.

+ Need robust, data-driven prediction methods.



| OURGOAL

> Develop and optimize Artificial Neural Network models for emission prediction,
> Provide a step toward intelligent, low-emission woodstoves.
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Experimental setup

PRE-HEATING

PHASE

TESTING PHASE TESTING PHASE
Beech wood Briquetts

* about4-5hours; e about4-5hours,
* testing phase * testing phase
consists of 5 consists of 4
combustion combustion
periods (0,75 h - periods (0,75 h -
1 heach), 1 h each),
: * 1 wood log was * 1 briquette was
used (about 1.7 used (about 1.8
kg) for each kg) for each
RomOtop Lugo N combustion combustion
period period

stove



Data

INPUTS

OUTPUTS

inlet water temperature — Ty [°C],
outlet water temperature — T ;7 [°C],
flue gas temperature - T [°C],

0, [% vol.],

chimney draught - p, [Pa],

atmospheric pressure — P,[mbar],
laboratory temperature - T, [°C],
laboratory relative humidity — Rhy, [ %],
water flow in boiler - Viy [m?/h],

CO,

I cO

NO

Models

‘ MLP (different topologies)

‘ LightGBM
‘ XGBoost

‘ Hybrid model: MLP+LightGBM
‘ Hybrid model: MLP+XGBoost
‘ ARIMA (includes factor of ,time”)

‘ LSTM (reflects variations in time during the modelled process)



CO prediction: Models’ fit evaluation

MLP Prediction vs True CO

— True CO
=== Predicted CO

RMSE
[mg/m3N]

BEECH WOOD

MLP(16, 1) 1645.97 | -1.538
MLP(64, 32, 1) 740.44 0.486

MLP(128, 64, 32, 1) 0 20 40 sample index 60 80 100

MLP(256,64,16,1) | 391.11 | 0.857 -
MLP Prediction vs True CO
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MLP(64, 32, 1) 343.02 0.752

MLP(128, 64, 32, 1) 329.27 0.772

MLP(256, 64, 16, 1) 334.99 0.764




CO prediction: Models’ fit evaluation

BEECH WOOD BRIQUETTS
NN [
[mg/m3N] [mg/m3N]
XGBoost 276.364 0.928 XGBoost 251.569 0.867
LightGBM 392.927 0.855 LightGBM 215.945 0.902
MLP + XGB (50/50) 292.895 0.920 MLP + XGB (50/50) 285.359 0.828

MLP + LightGBM (50/50) 328.369 0.899 MLP + LightGBM (50/50) 264.452 0.853



Why

MLPRegressor
Is hot ,,good”?
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CO [mg/m3N

CO [mg/m3N]

CO - ARIMA baseline (beech_stable)
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€0 concentration

Long Short-Term Memory neural networks

(LSTM)

> ,,catches” the temporal dynamic variations in a process

Forget gate

Output gate
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What to show?
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Long Short-Term Memory neural networks

( LS I M ) beech wood: LSTM vs. True (first 164 test points)
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Different fuels require different models.

Beech wood, with unstable combustion,
benefits most from deep networks and
hybrid models.

I Conclusions

Briquettes, with stable combustion, can
be modeled effectively with boosting
methods.

Classical models like ARIMA are

insufficient, while LSTM networks can
capture important temporal features.
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